首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71200篇
  免费   5263篇
  国内免费   2500篇
  2023年   1139篇
  2022年   1061篇
  2021年   2215篇
  2020年   2353篇
  2019年   3270篇
  2018年   2841篇
  2017年   2027篇
  2016年   2014篇
  2015年   2519篇
  2014年   4755篇
  2013年   5936篇
  2012年   3666篇
  2011年   4703篇
  2010年   3574篇
  2009年   3882篇
  2008年   3957篇
  2007年   3984篇
  2006年   3535篇
  2005年   3065篇
  2004年   2713篇
  2003年   2155篇
  2002年   1936篇
  2001年   1228篇
  2000年   937篇
  1999年   928篇
  1998年   861篇
  1997年   641篇
  1996年   595篇
  1995年   616篇
  1994年   570篇
  1993年   434篇
  1992年   432篇
  1991年   360篇
  1990年   303篇
  1989年   245篇
  1988年   216篇
  1987年   188篇
  1986年   161篇
  1985年   275篇
  1984年   457篇
  1983年   340篇
  1982年   355篇
  1981年   269篇
  1980年   204篇
  1979年   197篇
  1978年   173篇
  1977年   143篇
  1976年   116篇
  1975年   108篇
  1973年   106篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   
992.
Human DOC-2/DAB2 interactive protein (hDAB2IP) gene is a novel member of the Ras GTPase-activating family and has been demonstrated to be a tumor-suppressor gene that inhibits cell survival and proliferation and induces cell apoptosis. It was reported that the expression level of hDAB2IP in gastric cancer tissue was highly correlated with tumor progression, however, whether hDAB2IP genetic variants are associated with the risk of gastric cancer remains yet unknown. In this case–control study, we conducted a genetic analysis for hDAB2IP variants in 311 patients with gastric cancer and 425 controls from the Chinese Han population. We found that the SNP rs2243421 of hDAB2IP gene with the minor allele C significantly revealed strong association with decreased gastric cancer susceptibility (P = 0.007, adjusted odds ratio [OR] = 0.734, 95%CI = 0.586–0.919). Haplotypes rs2243421 and rs10985332 (HaploType: CC, P = 0.012, aOR = 0.760) and haplotypes rs2243421 and rs555996 (HaploType: CG, P = 0.034, aOR = 0.788) represented the decreased risk of gastric cancer, respectively. On the contrary, rs2243421 and rs555996 showed an elevated susceptibility (HaploType: TG, P = 0.010, aOR = 1.320). Our results for the first time provided new insight into susceptibility factors of hDAB2IP gene variants in carcinogenesis of gastric cancer.  相似文献   
993.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   
994.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   
995.
Bardet–Biedl Syndrome is a multisystem autosomal recessive disorder characterized by central obesity, polydactyly, hypogonadism, learning difficulties, rod-cone dystrophy and renal dysplasia. Bardet–Biedl Syndrome has a prevalence rate ranging from 1 in 100,000 to 1 in 160,000 births although there are communities where Bardet–Biedl Syndrome is found at a higher frequency due to consanguinity. We report here a Pakistani consanguineous family with two affected sons with typical clinical features of Bardet–Biedl Syndrome, in addition to abnormal liver functioning and bilateral basal ganglia calcification, the latter feature being typical of Fahr's disease. Homozygous regions obtained from SNP array depicted three known genes BBS10, BBS14 and BBS2. Bidirectional sequencing of all coding exons by traditional sequencing of all these three genes showed a homozygous deletion of 10 nucleotides (c.1958_1967del), in BBS10 in both affected brothers. The segregation analysis revealed that the parents, paternal grandfather, maternal grandmother and an unaffected sister were heterozygous for the deletion. Such a large deletion in BBS10 has not been reported previously in any population and is likely to be contributing to the phenotype of Bardet–Biedl Syndrome in this family.  相似文献   
996.
The glyoxalase system and its main enzyme, glyoxalase 1 (GLO1), protect cells from advanced glycation end products (AGEs), such as methylglyoxal (MG) and other reactive dicarbonyls, the formation of which is increased in diabetes patients as a result of excessive glycolysis. MG is partly responsible for harmful protein alterations in living cells, notably in neurons, leading to their dysfunction, and recent studies have shown a negative correlation between GLO1 expression and tissue damage. Neuronal dysfunction is a common diabetes complication due to elevated blood sugar levels, leading to high levels of AGEs. The aim of our study was to determine whether single nucleotide polymorphisms (SNPs) in the GLO1 gene influence activity of the enzyme. In total, 125 healthy controls, 101 type 1 diabetes, and 100 type 2 diabetes patients were genotyped for three common SNPs, rs2736654 (A111E), rs1130534 (G124G), and rs1049346 (5′-UTR), in GLO1. GLO1 activity was determined in whole blood lysates for all participants of the study.  相似文献   
997.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
998.
999.
RuvB family of protein contains two similar kinds of proteins i.e. RuvB1 and RuvB2 from yeast to human. These proteins belong to the AAA + class of proteins and are critical components of several multiprotein complexes involved in diverse cellular activities. There are two RuvB proteins annotated in the Plasmodium database but the identification of the third protein recently by our lab has raised the question why Plasmodium falciparum contains three RuvB proteins instead of two. Hence the biochemical characterizations of these proteins have become essential to understand the role of these proteins in the malaria parasite. Recently we have reported the characterization of the recombinant PfRuvB3, which contains ATPase activity but lacks DNA helicase activity. In the present study we report the phylogenetic analysis and detailed biochemical characterization of one of the other RuvB homologue RuvB1 from P. falciparum. PfRuvB1 shows considerable homology with human as well as yeast RuvB1 and contains Walker motif A and Walker motif B. The activity analysis of this protein revealed that PfRuvB1 is an ATPase and this activity increased significantly in the presence of ss-DNA. PfRuvB1 also contains DNA helicase activity and translocates preferentially in 5′ to 3′ direction. In vivo investigation of PfRuvB1 revealed that it is constitutively expressed during all the stages of intraerythrocytic cycle of P. falciparum and localizes mainly to the nucleus. These studies will make important contribution in understanding the role of RuvB protein in P. falciparum.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号